

半導体式ガスセンサーを用いた 堆積物のメタンフラックス測定の基礎的検討

〇古木健太郎 大谷壮介 大阪公立大学工業高等専門学校

チャンバー製作

	100m			1 2 3 4 5 6 7 8 適用時にもメタン濃度の 測定月 測定月 測定月 測定月 測定月 測定月 調定月 調定月 調定月 調定月 調定月 調定月 1 2 3 4 5 6 7 8 適用時にもメタン濃度の <td< th=""></td<>
文献値との比較				まとめ
沿岸域のメタンフラックス値				センサーの温度と湿度による影響を考慮したモデルを適用することで、
生態系	メタンフラックス (μg m ⁻² min ⁻¹)	場所	文献	 RMSEが2.60-5.66、R²が0.51-0.90の精度でメタン濃度を推定できる 一方で、真値と最大で16ppmもの誤差が検出されているため、モデルゴ
ヨシ湿地帯	107 - 652	淀川河口	本研究	✔ の補正が必要である。
ヨシ湿地帯	83 - 667	アメリカ	Kimら 2001	🕝 モデル式を適用することで、メタンフラックス測定における、チャンパ
湿地帯	17 - 117	オーストラリア	Lukes 2019	▶ ▶ 内部のメタン濃度の変化を計測できた。
マングローブ林	420	ベトナム	今村ら 2009	
マングローブ林	50 - 290	オーストラリア	Allens 2007	